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IT IS a great honour for me to deliver the second Daniel and Florence
Guggenheim Memorial Lecture here in Zurich. We all know the pro-
found insight of the Guggenheims into the value of a scientific treatment
of the many important, and often only partially solved, questions of
aeronautics and now also of astronautics. We are most thankful for the
moral and financial help the research workers enjoy.

In our small country there always exists a remainder of "local-patriot-
sm" and so we are proud to remember that the Guggenheims stem from

an old family which resided more than a hundred years ago at Lengnau,
only twenty miles from here, or in American measure: "just around
the corner". Meyer Guggenheim was born there in 1828 and emigrated
to America in 1847. One of his seven sons was Daniel Guggenheim.

Our eminent master Professor von Kármán held the first Guggenheim
lecture 1958 in Madrid. He gave one of his famous reviews of the state
of the science of aerodynamics. For the poor people who suffer from
the deluge of papers and reports, his lectures are an invaluable help as
they treat the most recent developments with a really Latin clarity.

It is clear that other people (for instance the present speaker) should
not simply imitate such a proceeding. I intend therefore to follow
a somewhat different path. It is my hope that a "Spaziergang" across
the wide field of aerothermodynamics in the light of the concept of
entropy may not annoy you too much.

Nearly a hundred years have passed since Rudolf Clausius, then pro-
fessor at this school, introduced entropy. Since then entropy has always
been a favorite theme in Zurich, especially as engineering applications
are concerned. I may mention the names of Gustav Zeuner and Aurel
Stodola, the latter being my unforgettable teacher. Stodola was able
to destroy the fear that befell so many students of this somewhat mystical
concept, as he showed us how to use it in all sorts of thermodynamical
calculations.

There are indeed some rather mysterious conclusions resulting from
the entropy laws. Entropy is not conserved but is constantly growing.

[1]



2 DANIEL AND FLORENCE GUGGENHEIM MEMORIAL LECTURE

The universe seems to run down to an end, the often cited "heat death".
There are enigmas and it might be that in this connection cosmology
has further surprises in store for the future. May space flight, one of
our aims, help these scientists in their difficult task to find a way out !

But let us stay in the more homely regions of our science. With the
realization of aeroplane and missile speeds equal to or even surpassing
many times the speed of sound, thermodynamics has entered the scene
and will never again leave our considerations. Re-entry at last has

idened this fascinating field still more, as the tremendous temperatures
involved produce chemical, and to a certain extent even electrical, changes
in the composition of the air.

Entropy plays here quite an important part. But there are limits. On
principle its classical definition applies only to the so-called equilibrium
states, which are not present in extreme cases. A hundred years of develop-
ment of equilibrium state physics finds its end, giving way to a much
more sophisticated program : the amalgamation of micro- and macrophysics.

THE WORK OF CARNOT AND CLAUSIUS

Thermodynamics is a relatively young branch of the physical sciences.
We may date the beginning back to 1824, when a young Frenchman
Nicolaus Sadi Carnot theorized on the "puissance motrice du feu" (1) (Fig. 1).

FIG. L Nicolaus Léonard Sadi Carnot 1796-1832.
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As did everybody at that time he adhered to the concept of a caloric,
some kind of a very subtle, indestructible fluid. Notwithstanding that, he
succeeded in finding very general laws by ingenious use of what v,,e now-
adays call "Gedanken-Experimente". First he remarked that the caloric

-

N.;

H  1
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4

FIG. 2. Water-wheel analogy of a heat-engine. If we take the water-level as a measure
H1-1-12 T1— T2

of (absolute) temperature the "efficiency" 7.1 — H translates into — 	i 


the Carnot-efficiency. But the analogy is only partially correct. Curiously enough, the

obviously bad exploitation of the available power in this romantic plant is not %Norse

than the thermodynamic efficiency of the steam process in a rather modern locomoti‘e.


The lost head H2 corresponds to the loss of energy in the steam-exhaust.

1•
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could do work only if there is a drop in temperature in the heat engine.
To a certain extent he used an analogy with a hydraulic wheel, tempera-
ture taking the role of the water level.

Figure 2 immediately suggests some consequences of this analogy.
For best efficiency: The whole of the water should enter the engine at
the highest level and leave it at the lowest. No water should pass beside
the wheel.

The caloric cannot do work direct but has to be delivered to or taken
away from some material substance, preferably in form of gas or vapour,
which show great changes in volume by heating or cooling them. In this

FIG. 3. Rudolph Clausius 1822-1888.

w,ayhe stated his famous Carnot-cycle consisting of two isothermal and
two adiabatic processes working with a fluid of constant quantity. He
realized the fundamental possibility of a reversed process, inventing,
by the way, the heat pump, and he showed conclusively that with given
upper and lower temperatures and a fixed amount of caloric his cycle
gives maximum efficiency.

He could not make further progress, as the first, the energy law of
thermodynamics, had still to be found, which states that heat and work
can be transformed into each other in a fixed ratio. This step was made
by Rudolf Clausius in 1850(2)(Fig. 3).

He combined the first law with Carnot's ideas. The heat quantity
Q, enters at the high temperature  T,  and a smaller one Q2 leaves the
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system at  T, • The difference is equivalent to the work done and
we have the simple relation:

Q,T,


Q2 = T,

or

QT2
2

(1)

The power is

L Q1. (1—
T,-) Q,
T,

where ?lc is the Carnot efficiency.

P Adiab. P

(2)

idQ,

Ad.

dQ2

FIG. 4. Dissection of an arbitrary reversible cycle into elementary Carnot-

! d
cycles. As the integral I 	 equals zero, the entropy-difference T —

T

is independent of the integration path and entropy appears as a statelfunction.

So, only a fraction of the heat supplied is transformed into mechanical

work. We can see that low temperature of the environment is rather

more important than high temperature on the supply side. Perhaps there
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are lower temperated atmospheres on other planets which would allow
hiQher efficiency, but that is perhaps not too encouraging considering
other troubles coming from the diminished comfort for space men. The
next step was a generalization of the Carnot-cycle by the introduction
of arbitrary, but reversible, cycles.

By the well known artifice of dissecting these into elementary
Carnot-cycles (Fig. 4) we find instead of (1) and taking Q algebraically

d Qrel' 0
(3)

A simple proof shows that the integral along an arbitrary path from
1 to 2 is always:

2

S2 - = (4)

pro\ ided that d  Q is supplied in a reversible manner. S is therefore
a function of the state, called by Clausius 1865 Entropy Tpo7-4), " the
change"(3).

PI P2

To a 2
PI

t>,

1-*
FIG. 5. Adiabatic, irreversible throttling of an ideal gas. No heat is exchanged,

but entropy increases.

It is useful to remember that the suffix "reversible" in dQ,„ is necessary
only for the calculation of entropy. If we have a non-reversible process
going on some way from 1 to 2, the entropy difference is nevertheless
determined. But then the heat exchange has no direct connection with
entropy chanee.
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A typical example may be mentioned here, the adiabatic throttling
of an ideal gas (Fig. 5). From 1 to 2 the pressure falls, but the tempera-
ture is constant (as an energy check shows). Entropy increases, the pro-
cess is completely irreversible. In order to calculate the entropy difference
we choose a reversible path, first an isentrope from 1 to 1*, afterwards
heating at constant pressure p, from 1* to 2. We get

AS(1)— R-  ln —P-2

PI

For an irreversible process we have

2
C dQi„

J T

in our prey ious example the integral is zero).

In the case of an irreversible cyclic process

o dQ < 0

T

m,hich seems to be the simplest statement of the so-called second law.
A process of this sort occurs in any closed wind tunnel, mechanically

driven from outside. To secure a steady state inside the tunnel a cooler
is needed. The entropy of the gas at a given position inside does, of course,
not change. But the cooler draws heat away, equivalent to the mecha-
nical work done from outside. So the entropy of the environment is
rising steadily. The high rated mechanical energy is downgraded and
can perform practically no work, being at nearly ambient temperature.
As there always exists some irreversible friction, heat conduction, radia-
tion, "the entropy of the universe" is growing to a maximum, where
all high graded energy (which is conserved) has turned to heat. Clausius
drew this dreary conclusion.

The late Robert Emden, a very ingenious scientist, used to stress that
we on earth are not really living from solar-energy, as this, besides negli-
eible amounts, is radiated back to the planetary space. Instead v‘e are
living from a deliberate increase of solar entropy"). In the words of
Leon Brillouin(5) the sun delivers negative entropy or "negentropy" to
earth, and organic life is catching and squandering this most useful present.
But where did negentropy come from ?—We simply do not know.

Formula (4) gives only entropy-differences. This is no drawback,
if we consider one and the same element or compound. But if there are
chemical changes, the so-called "absolute entropies" are needed. Before
the advent of quantum statistics, which gives absolute entropies more
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or less direct, a more indirect way was found by Nernst in 1906, when
he introduced the so-called "third law of thermodynamics". In a some-
what simplified way it reads:

"The entropy of a substance disappears at absolute zero temperature."

As specific heat, heat of fusion and evaporation are known to a con-
iderable extent, absolute entropies can be calculated straightforward.

Usually its value is given for one gram-mole in a standard state, the latter
taken as especially convenient for the physical chemist (Pressure p* = 1

atmosphere, Temperature T =  298.1°K).

Some figures show the order of magnitude :

s*
— 0.684

R,p

3.27

15.71

24.66

8.43

erg
R„, the molar gas constant = 8.317 • 107 	 .

°K.

Let me mention the well-known formula for the entropy of an ideal gas:

S2— Si = c 1In P2 In Pi 1  (7)Pi I
for constant specific heat.

In most cases specific heat is dependent on temperature and not so much,
on pressure. So we have

d  T
s2—s1 = I cp  TR  ln (8)

The "real" gases have often a quite complicated equation of state F (p,

v, T) =  0, if density grows to larger values. There are long equations for
steam involving not less than 20 empirical constants.

As an example, and considering the importance in the aeronautical science,
I shall mention the formula for the sound elocity a in a real gas.

Generally we have from mechanical considerations

C (graphite)

Fe (solid)

FI, (gas)

0, (gas)

H20 (liquid)

)oes=cons,

(9)
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As entropy is a state function

	

( 
as as

	

ds — • dp i- (—av ) • dv
aP)u P


which can be transformed into

ds —
c„ .taT\ dp_f cp .1671 .dv
T Iv T

- 0(10)

hence

a- = y •

and using a well known thermodynamical formula the simple result
appears:



* t'L) T= const.

which for ideal gases gives the classical value:

a2 = y • --
o




Real gases can be treated most practically with the help of entropy charts
or diagrams. Often used are temperature-entropy (T, s) and enthalpy-
entropy (1-1, s) (Mollier) diagrams.

ENTHALPY AND FREE ENTHALPY

The Ideal Heat Engine

In our motors, jets or rockets, chemical energy is transformed into
mechanical energy. For instance in a turbo-jet the entering air is accelerated,
the change in momentum producing the thrust.

But we know that the jet is also hot and thereby quite a considerable
amount of energy is lost. The question is : how much mechanical (or
electrical) work can we gain at best?

We imagine a hypothetical apparatus working continously and
delivering mechanical or electrical power (Fig. 6). Within the "box" an
unspecified type of chemical reaction is going on. On the left the fuel
(air ,- hydrocarbon, oxygen + hydrogen etc.) is entering steadily, on
the right the products leave, both at pressure Po and temperature To of
the surroundings. As we intend to have the best possible device, we nat-
urally cannot afford a direct loss of heat at relatively high temperature.
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If heat exchanges with the environment are necessary, they should take
place reversibly at  T„.  Mechanical work should be extracted through
shaft and coupling and/or in the form of kinetic energy of the exhaust.
Transformation to electrical energy is another alternative.

I.

P 0 0 0

1
 1110.W1 W2 22

FIG. 6. Ideal, reversibly working propulsion mechanism using chemical propellents.

The first law gives immediately

+  2
2 — (14+Po y1) — (u2+p 0 v2) (13)

iv is velocity, Z mechanical or electrical work, u the (internal) energy,
r volume, all taken for one gram.

The second law is used in the following way : To secure a maximum
of efficiency we assume that the internal process works reversibly (com-
bustion, expansions, compressions, etc.), and as mentioned before also
the heat exchange q.

Then q = —T0(s2—s1) and we have

(u2 1-p0 r2—T 0 s2) = 4—gg

where g is Gibbs' free enthalpy

g = (u+pv—Ts)= h—Ts, (15)

specialized for  T1= T2 = pi= p2 =Po (h = enthalpy).

The part  h1—h2  is called heat of reaction at po, T0; (s2—s1)  is the
change in absolute entropy as we have in general a change in chemical
composition.

Gouy und Stodola (Fig. 7) were io my knowledge the first to apply free
enthalpy to the evaluation of heat-engine-processes(6 '7) . When absolute

(14)
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values of entropies were available, the maximum output for a given fuel
input could be calculated.

For the reactions
C+0, = CO,

C0+1, 02 = CO,

1-12+! 02 = H,0

the output can reach nearly 100 per cent of the heat of reaction. There

are even reactions, where more than 100 per cent can be gained. Here

FIG. 7. Aurel Stodola 1859-1942.

heat is taken from the surroundings and transformed to work. There
is no contradiction to the second law, as we have no cyclic process, but
use up the fuel.

The crux is the assumed reversibility of the chemical changes. Normal
fuel-air combustion is rather irreversible (look at a film, rolling backwards,
of a gasoline-air explosion!).

Quantum chemistry has shown that a chemical reaction means a re-
arrangement of the outermost electrons. Without further restraint the
reaction products gain kinetic energy corresponding to the energy of the
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order of one electron volt. But one electron volt corresponds to a "tem-
perature" of 7740K (1.6 • 10-12erg = k T). The next few collisions
with inert molecules (N2 etc.) lead to a degradation of this mechanical
energy which is irreversible with a consequent rise in entropy.

We should be able to hold firmly the reaction products and divert
their energy slowly outwards. This is the process in the ordinary galvanic
cell, where an electric field holds the charged particles back. Their effi-
ciency (at low current density) is quite high, very near to the maximum.
No high temperatures are involved.

You know that there is some sort of renaissance of this process in the
form of the modern fuel cells. Maybe one day their output density
will be high enough for practical applications even in the field of
space flight. At the moment there is no other way to reach high power
output but by irreversible burning.

We can approach reversibility by using pure fuels (LOX + hydro-
carbon or hydrogen) and very high temperatures (2000-3000K). Then
we arc nearing an equilibrium between association and dissociation,
where burning is reversible. To a certain extent this is realized in the
rocket combustion chambers. But there we have an input of relatively
cold material (even with regenerative cooling) and a corresponding en-
tropy increase during the heating to equilibrium temperature. On prin-
ciple we should use isentropic precompression up to this temperature,
but the practical difficulties are obvious and need no further comment.

PROPULSION IN THE VOID

In the planetary space the environment is different in several respects.
Pressure is practically zero and temperature is not defined.

Problems appear, if there is a need for dissipation of heat. Several
new propulsion systems as ionic drive or plasma jets include thermal
machinery, steam or gas turbines both working with closed cycles, more
or less along Carnot's cycle. The high temperature T1is limited as usual
by material properties but the lower temperature is not fixed. We w ould
naturally strive for a low T,. But as there is no convention, radiation
takes its place and the energy radiated (per cm2 and second) goes up
with its fourth power of T, (Stefan-Boltzmann's law). Low T, means
a big radiation surface and bctter efficiency, high T, the contrary. A
simple calculation shows that for an ideal Carnot process the smallest
radiating surface demands the temperature ratio:

T, 3
T,  4
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The corresponding Carnot-efficiency would be 0.25, a relatively low

fieure. But it is supposed in all the projects that there is plenty of heat

available, the heat source being a nuclear reactor.

m 2
F' = 9,04[—H F'= 12=1200 °K

MW T24

150

F/F.

To=300°

350°
12

400r

500°

T.; •-• 13
T'

T1.4

Q0 3  T2 = — T4

11<=°,85. "IT =CO.

T
RachatIon

=flet 0 ,95

1,5 1 2,0

To

FIG. 8. Closed-cycle gas turbine generator working with nuclear reactor heat. Radiator

area in function of radiator temperature To and ideal temperature ratio in the compressor.

71K = isentropic compressor efficiency, turbine efficiency, /lei efficiency of electric


generator.

100

50

600°
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Similar results can be seen in Fig. 8. Here a closed cycle gas turbine
with regenerator is considered. Some allowance was made for losses
in turbine, compressor and heat exchanger. The hatched line gives the
minimum specific radiation surface for different pressure ratios.
is fixed at 1200°K. The smallest radiation surface per megawatt of pov,er
is connected with  T,= T,.  Even then the absolute area is rather large
and construction may be quite a problem.

In rockets the diminishing counterpressure gives a useful contribution
to the specific impulse. But the theoretical limit is well known. An isen-
tropic expansion from a chamber temperature  T, to T2 = 0, gives an
exhaust speed of

w ma, = 2cpT1  (16)

(constant specific heat assumed for simplicity). Wmax is independent
the chamber pressure, in fact the theoretical pressure ratio would any-
way be infinite. It is well known that this limit cannot be reached
practically, because of finite nozzle dimensions, wall friction, energy
losses by incomplete combustion etc.

With the introduction of nuclear heating and use of isentropic expansion
of hydrogen very high exhaust velocities are possible. But the reactor
temperatures have to be extremely high, at least by present standards
(some 1600-2000°K or even more). It is therefore interesting to remember
that, considering the nearly unlimited supply of heat and the infinite pres-
sure ratio, an isothermal expansion could give any specific impulse you
wish181.

Indeed the formula writes

Wisoth 2RT  ln
P2

(17)

tending to oo if p, O.

The simplest scheme would be a system of long nozzles surrounded
by a nuclear reactor. Heat would be exchanged through the walls. Con-
trary to expectation, friction would not alter the exhaust speed, only
a change in dimension would be necessary. But there is another limit
which destroys all hopes191. Wall friction is intimately connected with
heat production in the boundary layer. If the so-called recovery factor
is equal to one (which is nearly the case in turbulent boundary layers),
we find by a simple calculation that the maximum velocity is exactly
the same as with isentropic expansion. The reason is that at a certain
velocity in the center of the nozzle the boundary layer temperature, caused
by friction, reaches the wall temperature and heat exchange stops (see
Note 1).
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Something like an isothermal expansion can nevertheless be realized
by a more complicated arrangementuo. The scheme is seen in Fig. 9.
A light substance (helium or hydrogen) in liquid state is vaporized and
passes through a first reactor. After heating, an expansion in a turbine
follows which delivers mechanical work. The process can be repeated
and after a last passage through the reactor the effective temperature
of the gas is increased by transmitting the work of the turbines
in electrical or even mechanical form to the gas. In Fig. 9 the second
way is illustrated. It is interesting to remark that the efficiency of the
mechanical accelerator need not be high, so we could use quite uncommon
blade shapes, turning angles and velocities, and most-_important some
high melting ceramic material. For very high temperatures electric trans-
mission would be more promising, but that requires the successft71
development of ultra-light electric machinery.

/ Regenerator
t/

H2

Compressor Turbine Closed He -Cycle

,11 01.

•••• • •

P ump
• • 

Impeller

Cooler H2 \Reactor

FIG. 10. A turbine-rocket drive after the proposal of N. Rott and E. L: Resler.

Helium is used in a closed-cycle process with very low inlet temperature. The power


is transformed into electrical or mechanical work to accelerate a hydrogen jet.

A highly interesting alternative was proposed by Resler and Rott"
(Fig. 10).They also use a turbine and an electrical (or mechanical) drive.
But they intend to use a regenerative helium cycle inserted in the process,
with a heat sink at liquid hydrogen temperature. This closed-cycle ma-
chine would truly give the utmost of Carnot-efficiency,the temperature
ratio being something like 50 to 1.

With both arrangements some 700-8000 rn/sec may be produced at
reactor (gas-) temperatures in the region of 1200°to 1500°K. If reactor
gas-temperatures of 2000°or even 2500°Kare possible, the direct heating
will of course be more practinl.
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ENTROPY IN GAS - FLOW

Non-viscous Flow Vortex Theorems

In non-viscous flow the well-known theorem of Helmholtz-Kelvin

dr J.dp
d t

r is the circulation along a line moving with the gas. This theorem
can be written in terms of entropy and enthalpy.

With

dS —
du+pdv = dq

T
 —T

and
h = u--hpv

the integral transforms to

dl
—=
dt

ITds—dhl

As  h  is a single valued function of state, the second term drops and
v,e have

r
-

d = Tds

dt
(19)

a formula yvhich is much used in meteorology after Bjerknes had intro-
duced it.

r=const
dr
-dt > 0

18)

FIG. 11. The circulation-theorem in the  T, s  - diagram. The area

circumscribed by the process line is proportional to the rate of change


of circulation along a closed fluid line.

In the  T, s-  diagram the integral is given by the area circumscribed.
If  p  and are in a single valued relation, this area disappears and there
is no change in circulation (Fig. 11).

2
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Another interesting theorem was found by Luigi Croccot"). He started
with Euler's equation for inviscid compressible gases

	

div w2

	

t
w  x rotw grad- -- = —grad h--1- T  • grad  s  (20)

2

If now the flow is assumed to be stationary and of constant energy in
the whole field,

u2
h+ const.

a condition which is fulfilled even if shock waves are present:
w2

grad -- H-grad  h = 0
2

and therefore

x rot iv - - — T • grad  s  (21)

The following conclusions can be drawn:
((L) A stationary gas flow irrotational and with constant energy is an

isentropic flow,
(13) If there are entropy changes within the field, vortices (vortex sheets)

will generally appear.
The last consequence is of importance for instance in the case of shock
waves in front of a blunt body. Vortex sheets will be formed w hose
strength will decrease at greater distances from the body.

ENTROPY IN BOUNDARY LAYERS

Oswatitsch's theorem

Entropy is produced in boundary layers at a relatively high rate, as
dissipation is mostly concentrated in these layers. Let us consider

0

o

FIG. 12. Boundary-layer along a flat plate in uniform stream of gas. Accord-




ing to the theorem of Oswatitsch drag is connected with the entropy flux.

a simple case: a plate parallel to a stream of constant velocity (Fig. 12).
We further assume that the Prandtl-number

pc
Pr =

- P
1.

(A = heat conductivity)
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equals one, if the boundary layer is laminar. In the turbulent case the
equivalent ratio Pr* of "apparent" coefficients has also this value, even
if Pr is not exactly one. Busemann has shown that for Pr or Pr* = 1

the simple relation applies:

	

h+ —2 c • T+ -2— const.
11,2

(22)

w = velocity parallel to plate

The flux of entropy can now be calculated for a section (3) relatively
far downstream. Index 1 applies to the undisturbed flow, index 2 to the
profile at the end of the plate. As the pressure is constant, the specific
entropy in section 3 is given by (s, taken as zero)

T, iv?

	

s3. cp  ln = cp ln 1 (23)
2cp  T,

As iv, is quite near to w1, we get for the entropy-flux:

	

s3 = cp (23w3 =w, - wi— 1 j*
. dy = - o3w3w1 • (w1—w,) • dy


2  cpT1 T
o

- 


We now compare this formula with the momentum equation which
gives us the frictional draQ  D of the plate

D
=

f e31l 3(3l 1—w ) . dy
o

So we sec that
D • iv, — T, • S3 (24)

This is a special case of the important theorem of Oswatitscho3).
An interesting question arises, if we carry out our flux calculation

in section (2).  S, is different from S3 (S,< S3). What does T, • S, mean?
Nothing else but the minimum power that is needed for propulsion.
We can think of a sophisticated propulsion mechanism that leaves a wake
behind the plate w hich possesses (in an absolute system) no visible kinetic
energy, the undisturbed temperature and undisturbed entropy. To obtain
this effect we have to apply two mechanisms:

a Carnot-cycle heat engine which utilizes the temperature differ-
ence T, to T, and transforms it into power. The entropy of
the environment is consequently growing.
an isentropic compressor which accelerates the air from w,

to 11.3 = wi.
(a) is sensibly smaller than (b)—(see Note 2).

2'



20 DANIEL AND FLORENCE GUGGENHEIM MEMORIAL LECTURE

Such equipment would have to be installed in great numbers, namely
for every fluid filament. The gain in power is considerable, but such
a complicated machinery is of course an absurdity. In certain applications
of boundary layer suction, however, the second part of this effect may
well be present.

In the last instance it is the sticking of molecules to solid surfaces that
initiates boundary layers. Sticking is physically quite different from the
mechanism of internal friction. Maybe one day an ingenious inventor
will find an anti-sticking device; at the moment nothing of this kind is
in sight. The next progress on the way to the reduction of frictional re-
sistance will be laminarization. The latest results of Pfenninger seems
to be encouraging(14).

ENTROPY IN SHOCK WAVES

When Riemann discovered the shock waves by theoretical reasoning,
he assumed an isentropic change of state. This is nearly true for weak
shocks, but not for strong ones.

The Hugoniot-Rankine equation

(P2—P1)

(suffix 1 in front of, 2 behind the shock)
can be transformed into the simple Kármán relation:

P2 -1-P1 (26)

which, by the way, is equal to the square of the so-called critical veloc-
ity a*.

For extremely weak shocks this becomes in the limit

dp

df2,

the common isentropic equation.
In stronger shocks the entropy increases. We find

S 2R).

y—
•ln[l

Y-H1
(ill? 1)] +

,'1 1

• ln [1
2 


y+1

iv
al

(28)

Y 	 P2 P1) 02+01

	

if  —1 02 01  201 02

(25)

(27)

where w is the gas velocity in front of the shock relative to the shock
front; al is the speed of sound in this region.



The Role of Entropy in the Aero-space Sciences 21

Stagnation pressure is reduced, stagnation temperature (as a con-
sequence of the first law) remains constant.

We have
_

Po,
- = e
Po,

For weak shocks an approximation gives

( P22 PI 

= •

3

	

"I' •

 1)2

 

(?+
(M-1)3 (30)3

1

From this formula it is evident that the irreversibility is quite small
near M,  I.

(29)

20 Î Normat Shock o(p= o°)
P2/Pt> I =MAXIMUM

ml > 1M 2 < 1
W1W2

As/R

3,5

,

2

1,5

30
oo

P1 P2
Oblique Shock (0 < tr30°-A.1)

1sinp

Mi>i
W1

\

?

60 90°
209 N. 6167

FIG. 13. Entropy rise in normal and oblique shocks.

Oblique shocks can te treated in much the same way. Here only the
velocity component normal to the shock front undergoes a change.

The formula is

M,  •1cos2i)1 (31)

P2/P1  >

 M2 1
W2

P2

S2-Si 1
In[1

2y
(M? • cos2 T - 1)

(1-




2
y ln[l

y+
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Figure 13 shows the substantial reduction of entropy increase. According

to Oswatitsch's theorem drag can be reduced by sweeping back the shock

front. The same principle explains the advantage of Oswatitsch's multi-
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FIG. 14.Two-dimensional ramjet with shock diffusors: (a) is normal shock; (b) (c)

oblique shock compression; lip propulsion efficiency; iid
To PI /

To 1
—diffusor efficiency.

shock diffusor inlet. An infinite number of shocks with vanishing strength


gives as a limit isentropic compression, but even a very limited multi-




plicity shows a considerable gain, as exemplified in the case of a (plane)
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ramjet where the propulsive efficiency is improved (Fig. 14). Well de-
signed intake diffusors are of great importance for the realization of
economic supersonic airliners.

The structure of shock waves

Shock waves are not real discontinuities, though they are sometimes
ery thin. An attempt can be made to apply the one-dimensional Navier-

Stokes equation, combined with the energy and continuity equations.

Besides the heat conduction 2d1- - the compressional viscous stress enters
dx

the equation:

Ow 22
= -2,ux +div 3-it'  • divcrx3

(32)

with it as normal, it' as bulk viscosity.

For the one-dimensional case:

:rxx ( 4 2 )
•

an'

	

3 3 Ox

4  aw,
If there is no bulk viscosity: .7.,„ —

3

A very crude order of magnitude argument shows immediately that the
thickness of the shock turns out to be really small in normal cases. We
can assume that :--txxmust be comparable to the total pressure difference,
say ),  (p,,—p1). Then we find for the thickness d

8 v 1
d  — - - • (Mr >1) (34)

3 a,

that gives for atmospheric air and for medium Mach-numbers something
of the order of 10-5 cm, quite comparable with the free path length.

Many people have given exact solutions on the basis of the Navier-
Stokes equation. One of the first was R. Becker(151. He neglected the
chanee of viscosity, and heat conduction coefficients with temperature,
and assumed a gas with Prandtl-number 3/4 to simplify the calculations.
Figure 15 shows the transition in the shock. Entropy is first rising and
afterwards there is a small reduction. M. Roy has shown that the entropy
maximum corresponds to the abszissa where the velocity curve is steep-
est""). The different terms of the energy equation are drawn separately.
This equation can be transformed by introduction entropy into the simple
form:

ds

T • - —


dx

dw


dx

cl1T

2 dx2 (35)
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If we call (ow) s =  S  an entropy flux, the left hand side means T • div  S,

the right hand side contains the entropy sources. Both concepts play

an important role in the new science of irreversible thermodynamics.

L 1

,

w L


w1 L1

,

AS

R

10

5

1

4

2


1

dT
Cv•p w —

dx

P./dx/
4 - {dwi


0

3


2


1

dw

P —
dx

106[cm)

1 I

\'
0,5

o

-0,5-1----,.

5-20




dx2

1l
i

 L2

0.6 -7

0,2

1

0




-15

dT

w c:T<

1?

-10 - 5


.=- x

max

e

-2 0 -15 -10 - 5 0 5

x • 106 [cm]

FIG. 15. Values of the state variables inside a normal shock after R. Becker. L is free

path length. The different terms of the energy-equation are drawn separately in the

dyn
last diagram.  M, =  3,  T1=  295°K, p = 106 	 , jt - 2.85 • 10-4   . Energy

cm2 cm sec

	

dT f 4 dw) dw d2  T

	

equation: cr-n•w- - p• - - • ---- 1. • --

	

dx 3 dx dx dx2

Thomas has included the variability of the coefficients of heat con-
duction and viscosity ( u — j T)  and he found values for the thickness
little differing from Becker's("). For air  (T1 = 300 K, y = 1,4) and
different Mach numbers:

M =  2 173.8 10-7 cm

	

3 106.6

	

4 87.6

	

5 79.5

	

oo 65.8

The finite limit comes from the indefinite growing of viscosity and
heat conductivity with shock strength. Green, Cowan and Hornig w ere
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able to measure the thickness with an interesting light reflection
method (18, 19), and Sherman did the same using a temperature probe in
a relatively weak shock at reduced density(20). In Fig. 16 (after Patter-
son) some results are shown compared with different theories, especially
with different laws of temperature dependence of viscosity (tt TN)(21).

0.40


0.32

Theoretical:  (gb =  0,= 135)

Pr =
Gilbarg and Paolucci

	 Mott-Smith
Zoller

0.16

0.08

'45r o
„;'•

Experimental:

Air
Helium
Argon
Nitrogen

0
1 0 1.2 1.4 1.6 1 8 2.0

M1

FIG. 16. Shock thickness (after Patterson). jx. = constant applies to Becker's solution.

The other curves are obtained by variation of the exponent N for the viscosity-temper-




ature dependence. Experimental points confirm the order of magnitude.

Mott-Smith's theory is different as he uses a mixture of two Maxwellian
distributions(22). The most astonishing conclusion is that the macroscopic
treatment by Navier-Stokes does not apply too badly, and that other
theories do not seem to show much improvement.

The application of shock tubes for the study of supersonic and hypersonic
gas flow is well known. Here I shall consider only a simple case of shock
reflexion, the so-called resonance tube(23). A cylindrical tube completely
or nearly closed at one end and open at the other end is used. A super-

N.c,
N.7>

coc, ,
, , ,....t..1„

0.24

L1

a 1,1
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sonic air jet is directed towards the open end. Long ago Hartmann found
that this device produces a periodic in-and-out flow of gas and outside
intense ultrasonic waves120. He was chiefly interested in these, but the
phenomena inside the tube are not less interesting. The part of the tube
near tne closed end is heated to a considerable temperature. An elementary

.=C>. P2 Q2 12 Pi PI

2  e  2 .<3= p3 p3 T3
T2

c=.>- X

State
/

/ 	p=const.=

Q=const =

a

State 3
N, ./

,

'Q=const Q3 t
/- -p=const=p2

?/-
/

-- e=const =Q1

S

FIG. 17. Shock wave propagation in the tube. Schematic entropy-diagrams for the


assumed thermal processes. Above without energy removal; Lower diagram with

radiation resulting in a stationary process. Entropy increase per cycle:


is 1 P3 0,
• In • In

R — 1 Pi 0,1

explanation may be given by considering the movement of shock waves
inside the tube (Fig. 17). The influence of the impinging jet may be repre-
sented by a mass-less piston which is driven by a constant pressure from
outside. A shock wave h is built up, which is reflected at the closed end
(c). After a certain time the reflected wave reaches the piston. From that
time on a relatively slow expansion takes place untill the original volume
is regained. Then a new cycle starts. The entropy as well as the tempera-
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1.1,1,1,iii

FIG. 18. Resonance tube. Air with a pressure of about 4.1 atmospheres
absolute and with a stagnation temperature of 20°C flows as a small jet
against the opening of a straight circular platinum tube closed at the other
end. Shock wa‘es are running into the tube and are reflected at the closed end.
Depending on pressure several shocks may be simultaneously in the tube.
The tube is thermally insulated by an evacuated bulb and glows. Surface
temperatures are about 1000°K, and the light emitted is quite appreciable.

9,8
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ture have increased as the shocks were irreversible. If there were no heat
extraction, the temperature would rise to :

Tmas P2 
 independent of 7.
Ti p,

With heat extraction the process will be stationary at some intermediate
temperature. We can demonstrate the effect quite simply. A thin tube
of platinum is fixed in an evacuated lamp bulb (Fig. 18). Air of about
4 atmospheres absolute at room temperature leaves a cylindrical nozzle
as a free jet. The tube heats up and is glowing at about 700C. There
is some indication that accidents with high pressure valves might have
been caused by similar phenomena.

CONNECTIONS BETWEEN ENTROPY AND MOLECULAR THEORY

Up to here we have used the classical definition of entropy which is
sufficient for most of the practical problems. But very early phenomena
not explicable by macroscopic theory were observed. For instance there
was the riddle of specific heat of two-atomic gases, where one degree of

V2

. • 0 ,

n1  . n 2,

o
0

Removable


Wall

I 1 Q
FIG. 19. Above: Irreversible mixing of gases. Below: Revers-




ible mixing by the use of semi-permeable pistons. Work is done


and heat has to be added.

freedom is evidently not in action, contrary to the otherwise well established
equi-partition theorem. This "cloud over the mechanical theory of heat" in
the words of Lord Kelvin was dispersed much later by the quantum
theory.

A very curious conclusion was drawn quite early by Gibbs(251. He
considered the mixing of different gases (Fig. 19). If we have two
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volumina of gases at the same pressure and temperature and let them
mix, the process is clearly irreversible and total entropy increases. For
its calculation in the classical way we have to perform the mixing in a
reversible way which can be done, at least on principle, by the application
of semi-permeable pistons. Heat has to be added and work is done. If
we use one mole of each gas for example, entropy is increased by

Zls = R 2 In 2

as a simple calculation shows.
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Flo. 20. Experiment of Kantrowitz, showing loss of stagnation pressure

in consequence of an entropy increase by relaxation.

But the formula contains an astonishing paradox, as there is no influence
of the nature of the gases. So two gases of identical nature would show
the same increase, contrary to experience where nothing happens if a
separating wall in a mass of gas is drawn out.

The paradox is that the slightest difference gives an effect, but complete
identity gives none. This suggests that the calculation of entropy must
in reality be a counting process. As an illustration let us imagine two
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specimens of coins from different countries but of equal monetary value.
They may both have the same weight. In normal times, for a control
of your fortune, you may simply weigh the whole lot. This is a "macro-
scopic" method. But if monetary perturbations occur it might be wiser
to make a closer inspection and to count the coins "microscopically",
in our case: to look at the molecules.

First I would like to mention an experiment by Kantrowitz, equally
simple as interesting(26). Carbon dioxide is a gas consisting of linear
three-atomic molecules. In normal equilibrium the molecules have trans-
lational, rotational and, to a certain extent also, vibrational energy.
Kantrowitz let the gas flow under some pressure from a receiver through
a nozzle and impinge on a very small pitot head (Fig. 20). One v,ould
expect that the pitot shows exactly the pressure of the gas in the receiver.
But with CO, it was visibly smaller. The explanation is the following:
As the compression before the pitot occurs in a very short time, the oscil-
lation does not follow immediately, some 30,000 impacts are needed
to excite vibration. For a short time the gas behaves as if it possessed
a smaller number of degrees of freedom and during this time it reaches
a higher temperature. But immediately afterwards the vibration gets
continuously excited to the equilibrium level. This means an irreversible
temperature drop and consequently an entropy rise. But we know that
greater entropy at the same equilibrium temperature means lower stagna-
tion pressure and this corresponds to the observation.

This "relaxation"-phenomenon is well known also from experiments
on the "dispersion" of the sound velocity in CO,, a change of sound velocity
with frequency. A fine confirmation of the relaxation was given by
Bleakney("). He measured interferometrically the density variation
in a shock in CO,. The total entropy change is invariably given by equa-
tion (28), but immediately behind the shock there is a clearly visible zone,
of relaxation (Fig. 21).

It is plausible to assume that a similar entropy increase will occur
at any object put into a stream of CO,. According to Oswatitsch's theorem
an additional drag will result(28). It would be interesting to obtain an
experimental verification.

There seems to be a connection with the aforementioned bulk viscosity
,u'. Busemann(29) taking into consideration that a change of specific
volume first changes the translational degrees of freedom, the other
following after a certain small relaxation time, gave an approximate
formula:

, 5 — 3 y
= 	 2

(36)
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It follows that we should have no bulk viscosity in mono-atomic gases
(y = 5/3) and it seems that the experiment confirms this conclusion.
Multi-atomic gases (y 1) would show, according to the formula, a bulk
viscosity equal to the normal viscosity, it' = it. But it seems that the

FIG. 21. Relaxation in a plane shock in CO2 after Bleakney. The adjustment of vibra-




tional energy takes a certain time and the corresponding length for transition is clearly

visible. Flow direction from right to left.
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whole question of bulk viscosity is not yet settled. There are indications
that for CO,  tz'  is in reality much bigger than  ,u.  In this case the relaxation
time is much greater for vibration than for rotation, and Busemann's
formula does not apply without change.

CHEMICAL EQUILIBRIUM

In rocket combustion chambers temperatures are so high that dissociation
occurs. In the chambers where flow-velocities are relatively low the
state of the gas mixture approaches equilibrium. Here at least entropy
is well defined and if its standard values for the different components
are known, the whole state is theoretically determined. As we strive
for simplicity, the example of dissociating hydrogen

H, + H,

shall be discussed.
We consider a mixture of H, and H, with a total mass of 1 mole H2

-= 2g) and at a pressure of pt., • The composition is given by the
value of a which designates the proportion of H2 molecules which are
dissociated, so that we have in moles:

H2 H, mixture

1—a 2a 1+a

a depends on pt., and on the temperature T.
The free enthalpies of the different constituents are

gi =

pi is the partial pressure of the component  i.
The total free enthalpy is given by

g  = Si

Now the equilibrium composition is determined by the condition that
in this state entropy should be a maximum, in other words that the varia-
tion (5g of  g  disappears for small changes of Œ.

Then the equilibrium formula is found:

ln  K = 1414)  QP 111 "1'S (37)
RT

(2S  —S

Here  Qp  is the heat of reaction at constant pressure and at the tempera-
ture T. It can be taken from calorimetric measurements and the known
values of specific heats.  SHi  and SH. are the absolute entropies. a is
connected with Kt, by

p
a =

K
(38)

KpH-p10,
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For example at »,„, = 1 and at  T =  40001( :

---  2.768, a = 0.64.

Figure 22 shows a temperature-entropy chart for hydrogen in equi-
librium state. / and the enthalpy are included.

In ail analogous way much more complicated reactions have been
treated and there are charts for air and combustion products up to 15,000°K
available.
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A most interesting consequence of quantum theory is the possibility

of calculating the entropy of the gaseous state of an element or compound

without using details of fusion or vaporization or even specific heats.

For a mono-atomic gas (also for an electron gas) the absolute entropy

for the aforementioned standard state  (T*, p*)  is

S* 2 3 51(21312 k5121
R. = 5 + 2 In M 2 In  T* ln p* ln N .

h3
(39 )

I

Here  R.  is the gas constant for one mole,

M  the molecular weight,

N  Avogadro number,

k  Boltzmann constant,

h  Planck constant. (See Note 3).

For more complicated molecules further terms including moments of

inertia, vibration frequencies etc are to be added ; spectroscopy is generally

able to deliver the necessary data.

NON-EQUILIBRIUM STATES

Up to now we have mostly considered equilibrium states. Chemical

thermodynamics does not go any further. But non-equilibrium states

are of growing importance; strictly speaking exact equilibrium is relatively

seldom in gas-dynamics. But a rational theory of non-equilibrium states

has necessarily to be extremely complicated. There are two ways for

further progress being followed now with great impetus.

First a theory of steady irreversible thermodynamics was developed

(Baumann, Onsager, de Grooton, Prigogine and others), a partially

phenomenological approach which has been very successful in the treat-

ing of phenomena where different effects are operating simultaneously,

for instance heat conduction plus diffusion. For a simple gas flow at

high speed there is not much progress to be mentioned to date, as equa-

tions of the type of formula (35) result, where entropy flux and sources

of entropy can be calculated directly. But we may expect that important

developments will come along with time.

The other way is more fundamental. It goes back to the kinetic theory

of non-uniform gases, using Maxwell-Boltzmann's equation. There,

entropy has a new definition which, in the limit, leads to the classical equi-

librium relations. .
So we see that a new era begins for thermodynamics rather more adapted

to practical phenomena, if viscosity, heat conduction, diffusion and

chemical reactions all act at the same time. It may be that the old generation

will be disappointed at the growing complications, but then we have
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the young scientists well aquainted with abstract thinking and with the tre-
mendous possibilities of electronic calculations. The rate of theoretical
development may be slow at times, but there is always some way out of

the difficulties. Let us only remember that at the beginning of this century
viscous flow at high Reynolds numbers was practically intractable with
the old methods, especially if turbulence occurred, but owing to the work
of Prandtl, Kármán, Taylor, Dryden, and many others these problems
are now solved to quite a considerable extent. So there never is room

for despair.
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Note 1

Isothermal Expansion

Taking the recovery factor equal to one for simplicity the temperature

of the gas near the wall is higher than the gas temperature T9, in
tt .2

the nearly undisturbed center by the amount  C  (Fig. 23). Heat transfer
2cp

/

/ T4"/
wc

FIG. 23. (belongs to Note 1).

Tgw

Tw

3.
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from the wall stops, if  T9, ' Tw. From this point on an
 2cp

adiabatic expansion to zero pressure gives
w 2 — it.2

max
T-, gc

P

so that
1Y/2nax

	

= Tgc = T

	

2cp 2cp

This means that there is no gain over the simple isentropic expansion

(equation (16) of the text).

Note 2

Minimum Propulsive Power
Step a: Power is produced by using the temperature-difference between

T. and T, in a Carnot-cycle, the pressure and velocity of the gas remaining

constant.

We have to take away continuously the heat (per unit mass):


dq  —cp  dT

The Carnot-efficiency is equal to

T,
)1c =

Integrated between the limits T2 and T, the work comes out as:

cp• 1(T2- -T1)—T1• in

Summed up across the whole boundary layer the power gained is:

La— oo c -T1)—T,• In  T2  • d

	

P - T, -
o

Step b: The gas at uniform temperature T, and variable velocity iv.,

is now accelerated to iv, by isentropically working fans. The power needed

is simply:
6,

- -0
Lb = o2 11)2 • ( I

1

2
2) • dy  09 w2cp  • (T,----T1)• dy

0

The total propulsive power is the difference of L,, and La:
6,

T2
L —L h -

-1 —cT• jo.,11%,• In ) • dyp  a p 1 - -

0

= C p • T,• I •
11.2_0

Iv, . in ( i :_. 1 _2 .  dy

2cpT,
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On the other hand thc entropy flux S2 is given by the following integral

S., — c , • • 14 -) • dy
0

Hence We have:

Lp Ti S2

T, S.,

	

We can introduce an equivalent drag  D' —   which is smaller than

S.,
D  by the factor •

S,

As a simplified example we may take a laminar boundary layer with

Pr — 1, y — 1.40,  at Mach-number 2 where the velocity profile is approxi-
D'

mately linear. The ratio equals 0.62 and the ratio ° is 0.18.
Lb

Note  3

Absolute Entropy qf a Mono-atomic Gas

A relatively simple method for the calculation of the entropy from

first principles due to H. A. Lorentz t3't can be modified to include
quantum effects. For simplicity we take one gram-atom of a mono-atomic
gas. Its volume r contains then N atoms (N = 6.025 • 102" Avogadro's
number ).

For a detailed description of the state of this complicated mechanical

system we should know 3N positional coordinates (q, q., • • • qt,,,) ami
3N momentum components (p, p, • • • p,,N).

We shall imagine a 6N-dimensional "phase-space" (q, p). The micro-

scopic state of the gas is then represented by one single point in this space.

If r and  T  are fixed, this point can move only in a limited region, the

so-called phase-volume. It is given by the integral:

= idq, • clq2 • ... • dqa, • dp,• dp2• ... • dp„

hich can be divided into a spatial factor

I dq, • clq, • ...

and a momentum factor

fb m o m — • • • 1  .1.1dp1 dP2 • • • • dP:s.v

as coordinates and momenta are independent.

p is simply equal to IN, as every molecule has the full spatial range v.

requires a special consideration. The total energy E of the gas
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is kinetic, as we exclude interaction of the atoms besides the impacts

in collisions. Therefore the momenta have to fulfil the condition:

	

2 2
Pi m-12= E - R • T

2m  2m '

m  being the mass of one atom.

In other words: the representative point moves on a spherical surface

in the momentum space  (p)  with radius:

P = I 14 2mE

Now it is important to remark that the volume enclosed by a many-

dimensional sphere is practically concentrated in an extremely thin surface

shell. Indeed if we write for the total volume

J =  const. •  rN

a surface layer of small thickness  ir  has the partial volume


jJ  const. •  n • rn -1 • Jr

the ratio being

if Jr
=n • -

J

As  n  is of the order 102', If is comparable to  J  even if the thickness lr
is only the 1024th part of  r.  Therefore we can take the whole volume

of the p-sphere instead of a very thin surface layer.

According to a well known calculation the volume of such a hypersphere

turns out as
3 N

=
. p3N

The total phase volume is now:

' Clom

If WC take classical mechanics to the last consequence, there is no sense

in substituting an infinitesimally thin sheet for a volume. But with

Heisenberg's famous principle of indeterminacy quantum mechanics

has brought a certain latitude ( lp. JO in the fixation of momenta and

coordinates. For one degree of freedom we have for instance

•. l.v • . •  h --  Planck's constant

For 3N degrees of freedom the elementary volume of phase space is there-

fore not infinitesimal but equals h"N.

We have to measure the phase volume in this unit (Sackur-Tetrode),

and the surface layer has a small but finite thickness.
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So we find:
0'

0"

as a natural measure of phase volume. This is not the end. Another
quantum phenomenon enters: the  indistinguishability  of the atoms.

If we interchange the  nth  and the  in`h  atom, the representative point
changes place in the surface layer if the atoms are considered as distinct.

But if they are indistinguishable, both points represent the same physical

reality and the accessible phase volume consequently is reduced. We
can exchange every atom with every other in  N!  ways and the phase

volume that really counts, is:

0 —
N!

Entropy is now defined as being proportional to the logarithmic measure

of the accessible phase volume, the constant factor being Boltzmann's

k- ---- R m
N

So we obtain the following formula for the absolute entropy:

i
3N

As /V is an extremely great number we can use Stirling's formula with

good approximation:

In  n! n •  In  n--n

and after some simple algebraic manipulation we find:

3 3
In r+ ln:r"•2• - In

(  2mE   )312
I

5 5
• In  N  In

R  2 2 2 2

3
Substituting  p  (pressure) and  T  for r and  E = R„,• T  we gain equation

(39) of the text.
J. ACKERET
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